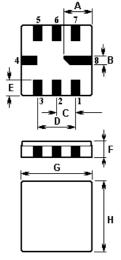
HR303.825A 303.825MHz One-Port SAW Resonator For Wireless Remote Control

Approved by:

Checked by:

Issued by:

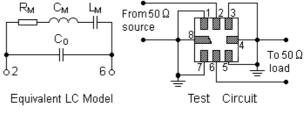

SPECIFICATION

PRODUCT:SAW RESONATORMODEL:HR303.825AQCC8C

HOPE MICROELECTRONICS CO., LIMITED

Tel:+86-755-82973806 Fax:+86-755-82973550 E-mail: <u>sales@hoperf.com</u> http://www.hoperf.com Page 1 of 1 The HR303.825A is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic QCC8C case. It provides reliable, fundamental-mode, guartz frequency stabilization i.e. in transmitters or local oscillators operating at 303.825 MHz.

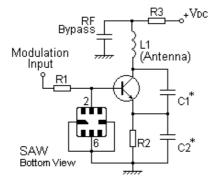

1.Package Dimension (QCC8C)



Pin			Configuration			
2		Terminal1				
6		Terminal2				
	4,8		Case Ground			
1,3,5,7			Empty			
Sign	Data (unit:	Data (unit: mm)		Data (unit: mm)		
А	2.08		E	1.2		
В	0.6		F	1.35		
С	1.27		G	5.0		
D	2.54		Н	5.0		

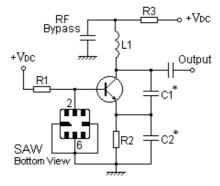
2.Marking

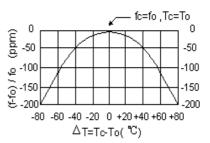
HR303.825A



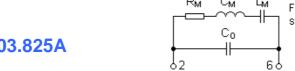
Laser Marking

4.Typical Application Circuits


1) Low-Power Transmitter Application


5.Typical Frequency Response

>1:Transmission /M Log Mag 5.0 dB/ Ref >2:Off -1.50 dB 303.821 MH: -1.21 dB Ch1:Mkr1 Ch1 Span Ø.75Ø MHz Center 303.825 MHz


2) Local Oscillator Application

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Tel:+86-755-82973806 Fax:+86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com

7.Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	± 30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	
Operating Temperature Range	T _A	-10 to +60	

7-2. Electronic Characteristics

Characteristic		Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25)	Absolute Frequency	f _C	303.750		303.900	MHz
	Tolerance from 303.825 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.4	2.0	dB
Quality Factor	Unloaded Q	QU		13,100		
	50 Ω Loaded Q	QL		1,950		
Temperature Stability	Turnover Temperature	To	25		55	
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/ ²
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		17.5	26	Ω
	Motional Inductance	L _M		120.0852		μH
	Motional Capacitance	См		2.2874		fF
	Shunt Static Capacitance	C ₀	2.40	2.65	2.90	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

C 2003. All Rights Reserved.

- 1. The center frequency, f_C, is measured at the minimum IL point with the resonator in the 50 test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_c versus T_c , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail sales@hoperf.com.